Kriging Interpolation Filter to Reduce High Density Salt and Pepper Noise

نویسنده

  • Firas Ajil Jassim
چکیده

Image denoising is a critical issue in the field of digital image processing. This paper proposes a novel Salt & Pepper noise suppression by developing a Kriging Interpolation Filter (KIF) for image denoising. Gray-level images degraded with Salt & Pepper noise have been considered. A sequential search for noise detection was made using kk window size to determine nonnoisy pixels only. The non-noisy pixels are passed into Kriging interpolation method to predict their absent neighbor pixels that were noisy pixels at the first phase. The utilization of Kriging interpolation filter proves that it is very impressive to suppress high noise density. It has been found that Kriging Interpolation filter achieves noise reduction without loss of edges and detailed information. Comparisons with existing algorithms are done using quality metrics like PSNR and MSE to assess the proposed filter. KeywordsImage enhancement; image denoising; noise reduction; image restoration; salt & pepper noise; kriging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter

Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...

متن کامل

Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images

Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...

متن کامل

High Density Noise Removal by Cascading Algorithms

An advanced non-linear cascading filter algorithm for the removal of high density salt and pepper noise from the digital images is proposed. The proposed method consists of two stages. The first stage Decision base Median Filter (DMF) acts as the preliminary noise removal algorithm. The second stage is either Modified Decision Base Partial Trimmed Global Mean Filter (MDBPTGMF) or Modified Decis...

متن کامل

A New Efficient Approach for Removal of High Density Salt and Pepper Noise in Videos Using Modified Decision Based Unsymmetric Trimmed Median Filter

A new and efficient algorithm for high-density salt and pepper noise removal in videos is proposed. The proposed algorithm uses a modified decision based unsymmetric trimmed median filter to remove the high density salt and pepper noise. This filter restores the gray scale, and color images that are highly corrupted by salt and pepper noise. The existing methods are Standard median filter (MF),...

متن کامل

An adaptive decision based interpolation scheme for the removal of high density salt and pepper noise in images

An adaptive decision based inverse distance weighted interpolation (DBIDWI) algorithm for the elimination of highdensity salt and pepper noise in images is proposed. The pixel is initially checked for salt and pepper noise. If classified as noisy pixel, replace it with an inverse distance weighted interpolation value. This interpolation estimates the values of corrupted pixels using the distanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.1300  شماره 

صفحات  -

تاریخ انتشار 2013